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Classical limit of the two-dimensional and the 
three-dimensional hydrogen atom 
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Department of Physics, North-Eastern Hill University, Shillong 793003, India 

Received 2 September 1988 

Abstract. Using the harmonic oscillator representation of the hydrogen atom and construct- 
ing the appropriate coherent state corresponding to the minimum uncertainty product, the 
classical limits of the two-dimensional and the three-dimensional hydrogen atom are 
examined. The method adopted in this paper is similar to that used recently by Bhaumik, 
Dutta Roy and Ghosh. We deduce the classical limit by requiring that the expectation 
value ( r )  of the radial variable is large for the two-dimensional hydrogen atom. The 
resulting trajectory is an ellipse satisfying the conditions of the Kepler orbit in classical 
mechanics. In order to obtain the classical limit of the three-dimensional hydrogen atom, 
besides the condition of large ( r ) ,  we make the uncertainty A r =  ( ( r ’ )  - ( r ) 2 ) ” 2  a minimum 
with respect to certain parameters of the coherent state. Imposition of only the first 
condition leads to an elliptical orbit, which is not a Kepler orbit in general. Imposition 
of both conditions leads to an orbit identical with that of the two-dimensional hydrogen 
atom. However, the time evolution of the expectation values of position variables are 
consistent with the corresponding results of the Kepler problem only for small values of 
eccentricity, but not in general. 

1. Introduction 

Since its formulation in 1926, quantum mechanics has established itself as the most 
successful physical theory for the description of the microworld. On the other hand, 
the laws of classical dynamics explain many common phenomena involving larger 
objects moving with small velocities. The transition from quantum physics to classical 
physics seems to be an area which is still not thoroughly explored and fully understood. 
The transition has been described in general terms by Bohr’s correspondence principle: 
quantum theory must approach classical theory asymptotically in the limit of large 
quantum numbers. Further, the Poisson bracket formulation of classical mechanics 
and commutator bracket formulation of quantum mechanics indicate a formal structural 
similarity between classical and quantum mechanics. The analysis of the phase of the 
wavefunction in the Schrodinger equation and its relation to the Hamilton principal 
function of the Hamilton-Jacobi theory of classical mechanics is another way of relating 
quantum and classical mechanics. 

It is generally believed that an appropriate superposition of the relevant states 
resulting in a spacetime-dependent coherent state will exhibit the associated classical 
behaviour. This has been successfully done in the case of the one-dimensional (ID) 
harmonic oscillator (Schrodinger 1926, Sudarshan 1963, Glauber 1963). Schrodinger 
suggested that construction of such states for the hydrogen atom (H atom) should lead 
to a proper classical limit, namely the Kepler orbit. Recently, several attempts have 
been made at constructing a suitable coherent state for generalised potentials (Nieto 
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and Simmons 1979, Nieto 1980) as well as for the Coulomb potential in particular 
(Brown 1973, Snieder 1983). 

The connection between the three-dimensional ( 3 ~ )  H atom and the four- 
dimensional ( 4 ~ )  or two two-dimensional ( 2 ~ )  harmonic oscillators has been estab- 
lished by various approaches (Kibler et al 1986, Chen 1987). This has provided a way 
of studying the classical limit of the H atom on the harmonic oscillator basis (Gerry 
1986, Bhaumik et a1 1986). Bhaumik, Dutta Roy and Ghosh (1986, hereafter referred 
to as BDG), have constructed a very long-lived wavepacket which traverses an elliptical 
orbit consistent with the corresponding results of classical mechanics. They have 
achieved this by imposing the constraint ( z )  = 0 for the expectation value of position 
variable z and confining the analysis primarily to the motion of the wavepacket in the 
xy plane. In this paper, we investigate the classical limit of the 2~ H atom using a 
procedure similar to the one adopted by BDG. Apart from making available the details 
of the calculation of the classical limit of the 2~ H atom, our work is motivated by 
the following important considerations. 

It is well known that the central field problem in classical mechanics conserves the 
angular momentum vector L and the motion is in a plane perpendicular to it. From 
this point of view, one may ask whether the corresponding formulation in quantum 
mechanics is the 2~ Schrodinger equation having a circularly symmetric potential, 
because then the angular momentum conservation is retained both in quantum and in 
classical mechanics. In order to examine this in detail, we obtain the classical limit 
of the 2~ H atom. We further study the equivalence of this approach to that of BDG. 

It is also noted that even in the case of a central potential quantum mechanics does 
not conserve the angular momentum vector but only L2 and, say, L,. Hence, one 
cannot preclude the existence of a 3~ orbit for the classical limit of the 3~ H atom. 
This aspect is investigated in the present paper starting from the 3~ H atom and without 
imposing the condition ( z )  = 0. The condition that the uncertainty Ar = ( ( r 2 )  -(r)’)1’2 
is a minimum is imposed by requiring that the wavepacket should have maximum 
localisation in the classical limit. We further examine whether the classical limit 
obtained from the 2~ and the 3~ H atom in the present approach is completely 
equivalent to the classical limit in all details, like the exact time dependence of the 
orbit variables. 

In 8 2 we study the 2~ H atom in terms of the harmonic oscillator basis. Section 
3 deals with the construction of coherent states and deduction of the orbit in the 
classical limit of the 2~ H atom. In 9 4 we study the 313 H atom wavepacket by suitable 
parametrisation which does not make (z)=O in general and deduce the orbit in the 
classical limit. Section 5 deals with the discussion and conclusions. 

2. Spectrum of the two-dimensional hydrogen atom using the harmonic oscillator basis 

Let us consider the Schrodinger equation for the 2~ H atom: 

where V ( r )  = - k / r ,  k > 0, is the Coulomb potential and 

with x = r cos 4 and y = r sin 4. 
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Introducing the parameters A = 8 m Q k / f i 2  = 8/ao ,  q 4 =  - 8 m o E / f i 2  and ao= f i2 /m,k  
(the Bohr radius), equation ( 1 )  reduces to the form 

[4rv2+ A - q 4 r ] +  = 0. (3) 

It is well known that the 2~ H atom problem can be solved on the harmonic oscillator 
basis using the coordinate system (U, v )  given by (Englefield 1971) 

x = +( u 2 -  0 2 )  y = uv. (4) 

x +iy =+(U +iv)' = 2t2  ( 5 )  

This is equivalent to the complex coordinate system (5, [*) given by 

x - iy =;(U -iv)'= 2(5*)'. 

In terms of the polar coordinate system ( r ,  4)  

e =  &exp(ii4) 5" = & exp(-+i+) 

such that 

r = 2[*[ 4 = tan-'(y/x) = (phase of ,$-phase of ,$*). 

In terms of the complex coordinates 5, [* the Schrodinger equation (3) becomes 

Let us introduce annihilation and creation operators 

satisfying the usual canonical commutation rules 

[ a , , u j ] = [ a ; ,  a;1=0 [a,, a;] = 8, i , j = + , - .  (9) 

[ a ~ a + + a ? . u - + l ] $ =  (A/2q2)$. (10) 

In terms of these operators equation (7) becomes 

This equation is formally identical to the Schrodinger equation for a 2~ harmonic 
oscillator. a:a+ and a h -  represent the number operators having eigenvalues n,, n-, 
respectively and n ,  = 0, 1 , 2 , 3 , .  . . . Hence, 

n, + n- + 1 = A/2q2. (11) 

It can be readily seen using expressions given by (8) and (6) that 

Since the 2~ wavefunction is separable, the eigenfunction can be formally written as 

(c lnm(r,  4 ) = % m ( r ) @ m ( 4 ) *  
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@,,,(+) is an eigenfunction of -ih 8 / 8 4  with eigenvalues mh, m = 0, *I, *2,, . . . 
Therefore, it follows that 

-n+ + n- = 2m. (13) 

E = - ( 2 m 0 k 2 / h 2 ) ( n + + n - + 1 ) - 2 .  (14) 

Hence, from (11) we get 

Therefore 

E,, = - ( m o k 2 / 2 f i 2 ) ( n  -&2 

where n = n+ + m + 1 = 1,2,3, .  . . . One readily identifies E, with the energy eigenvalue 
of the 2~ H atom (Zaslow and Zandler 1967) obtained using other standard methods. 
It is noticed that the energy eigenvalues of the 2~ and the 3~ H atom nearly coincide 
for large quantum numbers. 

3. Classical limit of the two-dimensional hydrogen atom 

It is well-known that the classical limit of the I D  harmonic oscillator can be deduced 
by constructing the coherent state by superposing the harmonic oscillator eigenfunc- 
tions In) (Schrodinger 1926, Sudarshan 1963, Glauber 1963). Such a coherent state is 
characterised by the minimum uncertainty product of position and momentum. The 
works of Gerry (1986) and BDG on the classical limit of the 3~ H atom also adopt a 
procedure similar to this, using the superposition of two 2~ or 4~ harmonic oscillator 
eigenstates. 

1963, Glauber 1963, Gerry 1986, BDG) is 
The coherent state Icy) corresponding 

where a is a complex number such that 

a la )=  ala)  

with a being an annihilation operator. 

to the I D  harmonic oscillator (Sudarshan 

(16) 

- 
If Ho denotes the Hamiltonian of a harmonic oscillator of angular frequency w, then 

Holn)= (n+f)hw/n) .  (18) 
The time dependence of the coherent state is given by 

Hence, the expectation value of the position variable x is 

where a0 is the argument of the complex number cy. This expectation value (x) satisfies 
the classical equation of motion for the harmonic oscillator 

(a)+ J ( X )  = 0 (21) 
where (a)  = (d2/dtZ)(x). 
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From this basis we now proceed to study the coherent states having the minimum 
uncertainty, leading to the classical limit of a quantal problem in the case of the 
Coulomb potential V (  r)  = - k/ r, k > 0. 

In the case of the 2~ H atom treated as a ZD harmonic oscillator in the new variables 
5 and .$*, the coherent state la+, a-) in terms of eigenfunctions In,, n- )  of the number 
operators a:a+ and a’a- is: 

where \a+,  a..) is an eigenstate of a+ and a- with eigenvalues a+,  a- respectively. 
Following the method of BDG, we write 

a ,  = \a+/ exp(riA) 

along with the parametrisation 

1 %  = Y cos x / a - /  = y sin x (24) 
such that 1a+(2+/a-12= y2, which is applicable to the 2~ H atom problem. It will be 
shown that y2 is proportional to ( r )  and hence should be assumed to be large in the 
classical limit. 

Let us now introduce the time evolution of the state. We note that the coefficients 
of this coherent state are peaked around the maximum of a ? a l - ( n + !  n - ! ) - ” 2 .  Using 
Stirling’s formula we see that the following values of n + ,  n - ,  respectively, maximise 
the coefficients: 

N - =  y sin x. 
Expanding the energy E as a power series around these values, we can write from (14) 

(25) 
2 2  N +  = y2 cos’ ,y 

E = -(2mok2/ h2)(  n+ + n-+ 1)-2 

=Epeak+hWc(8+f8- ) - (3hWc/2Y2)(8++8-)2+.  . . . (26) 

Epeak 1 -2mok2/ h2 y4 (27) 

wc= 4mok2/ h3 y6 8 + = n , - N , .  (28) 

where 

The energy dependence of the state, entering through the factor exp( -iEt/ h ) ,  induces, 
to the leading order in 1/ y2, a simple time dependence of exp(-iw,t) on each of U+ 
and a- .  Thus, the time dependence of the state over and above the phase factor 
exp(-iEpeakt/h) is given by 

[a+,  a-) = I y2, x, A; t )  = I y cos ,y exp[-i(A+ wet)], y sin x exp[i(A- w , t ) ] ) .  (29) 
Using this, the expectation values of the dynamical variables x, y ,  r and angular 
momentum L can be found after expressing them in terms of annihilation and creation 
operators. The results are 

(30a) 

(30b)  

(x) = ( y 2 / ~ * ) [ c o s  2A(cos 20,t +sin 2x) -cos 2x sin 2 6  sin 2wct] 
( y )  = ( y2/T2)[sin 2A(cos 2w,t+sin 2x)+cos 2x cos 2A sin 2w,t] 

( r )=(y2/T2)(1+s in2x  cos2wCt) (30c) 
( L )  = 4h y2 cos 2x (30d)  

where L = xp,, - yp,. 
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If the coordinate system is rotated by an angle -2A, the resulting values of (x)and 
( y )  satisfy the equation of an ellipse with its symmetry axes coinciding with the new 
coordinate axes: 

(31)  
[(x)-(Y2/T2) sin2xI2+ ((Y))’ 

( Y Z / T 2 ) 2  [ ( y2 /  T 2 )  cos 2x12 = l .  

The angle -2A is the angle between the major axis of the ellipse and the original x 
axis. In the case of this ellipse, the variables (x) and ( y )  are defined in a coordinate 
system in which one of the foci is at the origin. The parameters of the ellipse are 

semimajor axis: a = y 2 / v 2  (32a)  

semiminor axis: b = ( y2 /  v 2 )  cos 2x (32b)  

eccentricity: E = sin 2x. (32c)  
The expectation value of the energy is 

( E )  -- -2m0k2/ h2  y4. (33 )  
Since (x) and ( y )  are periodic with frequency 2 w , ,  the time period of revolution is 

T = 2.ir/2wc = T / W ,  ( 3 4 a )  

T 2  = (4.ir2mo/k)a3. (34b)  

and hence 

This is identical with Kepler’s third law. 

semimajor axis, semiminor axis, eccentricity, energy and angular momentum: 
Equations ( 3 0 d ) ,  (32a) - (32c )  and (33 )  lead to the following relations among the 

a = l k / 2 ( E ) /  ( 3 5 a )  

b = l k / 2 ( E ) l ( l - ~ ’ ) ’ / ~  (35b)  

E = [ l  + ( 2 ( E ) ( L ) 2 / m o k 2 ) ] ” 2 .  (35c)  
The ellipse obtained by BDG in the x y  plane also satisfies the above relations. These 
are the same as the standard results of elliptical orbits of the Kepler problem in classical 
mechanics (see, for example, Goldstein 1978). 

Following the procedure of BDG, let us now estimate the lifetime of a wavepacket 
as it dissipates with time. Let us consider the simple case of a special state of the 
wavepacket moving in a circular trajectory ( E  = 0 and hence ,y = 0). Then, a+ = 
y exp(-iw,t) and a- = 0. The appropriate wavepacket in this case is obtained from 
(22) by setting n- = 0. Writing the symbol n for n+ for convenience, we get 

The coefficient of expansion in (36)  is a maximum for n = N+ = y2. Let v = n - N+ = 
n - y2.  Expanding the coefficients around the maximum value and using Stirling’s 
formula and noting that y2  >> 1 ,  we get 

Hence 
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Introducing the time dependence over and above the phase factor exp( -iEpeakt/ h )  
and considering up to the third term in the energy expansion of equation (26) and 
replacing the summation by integration over v, we get the state for ,y = 0, n- = 0 as 

ly2, t ) = ( 2 ~ y 2 ) - " ' S - ~ d v e i p ( - ~ -  4Y2 

The value of (r) obtained using equation (38) is independent of time: 

( r )  = Y2/T2. 

The expectation values (x) and (y) are determined similarly for the special state 
given by equation (38) (Gradshteyn and Ryzhik 1965): 

(x) =i 1 exp( -T--)( 18wat2 1 y cos 2w,t +6w,t sin 2w,t) 
71 Y 2Y2 

( y ) = T e x p ( - T - - ) ( y  1 18w;t2 1 sin2wCt-6w,t cos2wCt). 
71 2Y2 

As t+m,  both the expectation values (x) and ( y )  tend to zero, keeping (r) constant. 
This means that the wavepacket ultimately gets smeared over a circular ring of large 
radius. From the equations (39a) and (39b) we see that 

is the time in which the wavepacket gets smeared over a circular orbit. For a large 
planet like the Earth moving around the Sun, the decay time is of the order of yr 
which is very large compared to the present age of the Earth. Just for curiosity, if one 
evaluates T, in the case of the Bohr H atom for a coherent state around energy E,,, 
n >> 1, one gets 

where Eo is the ground-state energy of the 3~ H atom. For n = lo', T, is of the order 
of s. This time is significantly larger than the decay times of the highly excited 
H atom states and hence unlikely to have any observable consequence. We see that 
the nature of the Kepler orbit, the time period of revolution of the wavepacket and 
the mean life T, of the wavepacket moving in a circular orbit are found to be the same 
as those calculated by BDG starting from the 3~ H atom and imposing the condition 
( z ) = O .  Thus the present analysis shows that the classical limit is achieved in the 
following respects: (i) Kepler's first law is obtained; (ii) Kepler's third law is obtained; 
(iii) Kepler's second law, which describes the conservation of angular momentum is 
automatically guaranteed while it has been imposed in the BDG treatment of the 3~ H 
atom. 

4. Classical limit of the three-dimensional hydrogen atom 

The analysis of the 3~ H atom has been done by BDG using ZD harmonic oscillators 
in terms of the four variables tA, [X ,  tB and f z  which are related to the four variables 
r, 8, 4, U, the first three being the usual spherical polar coordinates. The hydrogenic 
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spectrum was obtained by applying the constraint that the wavefunction is independent 
of u. In order to obtain a wavepacket moving in a plane as required by classical 
mechanics, BDG set the expectation value ( z ) = O .  This condition, together with the 
associated results that (L,)  = (L,)  = 0, enabled them to obtain a wavepacket such that 
the time variations of expectation values (x) and (y) follow an elliptical orbit: 

where the parameters P, p and x are as defined by BDG. This is consistent with Kepler’s 
first law. The condition (L,) = (L,)  = 0 guarantees Kepler’s second law. BDG also 
established Kepler’s third law and the decay time of the coherent wavepacket. 

We now make the following observations. (i) Imposition of the condition ( z )  = 0 
does not necessarily confine the wavepacket to a plane. Such may be the case if (z’) 
is equal to or close to zero. This aspect is made clear by noting that in the case of the 
ID harmonic oscillator of mass mo, a n g u l a m u e n c y  w and energy E, the time average 
(x(t)) is zero whereas the time average ( ~ ’ ( t ) )  is Elmow’, which is positive and can 
be large. Similarly, for a coherent state which depends upon all three position variables 
x, y and z (or r, 8, 4), (z’) is positive and non-zero even if ( z )  = 0. Hence one might 
ask whether the Kepler orbit obtained by BDG starting from the 3~ H atom is only a 
kind of projection of the evolution of the coherent state onto the xy plane. (ii) It is 
well known that unlike the case in classical mechanics, the 3~ quantum mechanical 
central field problem does not conserve all the three components L,., Ly and L, of the 
angular momentum simultaneously. Hence, a priori one cannot rule out the possibility 
that a coherent state constructed starting from a superposition of two 2~ harmonic 
oscillator wavefunctions corresponding to a 3~ H atom may have motion in 3~ space, 
in a non-trivial sense. Therefore, it is of interest to investigate the nature of the orbit 
if the condition ( z )  = 0 is not imposed. 

In order to do this, we consider the parametrisation such that ( z )  # 0 in general in 
the case of the 3~ H atom. A suitable parametrisation which can be analysed analytically 
is 

Ia+I = y cos x cos S 

Ip+l= y sin x sin S 

(a-I = y sin x cos S 

I&=  y cos x sin S.  

This parametrisation retains la+I2+ la-I2+ Ip+I2+ ] @ - I 2  = y’. As before, for classical 
orbits y 2  >> 1. Following the procedure of BDG, with appropriate orientation of the x, 
y and z axes, (i.e. A = 0) we get 

(x) = ( y 2 / 7 ’ )  sin ~ S [ C O S  2wct+t sin 2x(cos2 x cos’ S+sin2 x sin2 

x (cos’ x sin’ s + sin’ x cos2 s)-’/’]  
(y) = ( y 2 / ~ ’ )  sin 28 cos 2x sin 2w,t 

( z )  = ( y 2 / ~ ’ )  cos 26 sin ~ ~ [ C O S  2w,t +t  sin 2x(c0s2 x cos’ s +sin2 ,y sin2 

(43a) 

(43b) 

x (cos2 x sin2 s +sin2 x cos’ s)-’/’] 

x (cos’ x sin’ s + sin’ x cos2 s)’/’+ sin 2x cos 2 w c t ]  

(43c) 

( r )  = (y’/77’)[2(cos2 x cos’ s +sin2 x sin2 

(43 d 1 
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(L,)= y2h cos2x (43e) 

( E ) =  -2mok2/h2y4 (43f 

where w, = 4mok2/ h3  y6. 

and (43c) show that 
Now, let us examine the general case given by equations (43). Equations (43a) 

( z )  = (sin 2x/tan 2S)(x). (44) 

This implies that the projection of the actual orbit for our particular choice of coordinate 
axes is a straight line in the zx plane, making an angle Bo = tan-’(sin 2x/tan 26) with 
the x axis. This implies that in the present case the actual orbit in the classical limit 
lies in a plane which is perpendicular to the zx plane and makes an angle eo with the 
xy plane. Now, we rotate the zx plane around the y axis through angle eo so that the 
new x ’y ’  plane coincides with the plane of the orbit. Then, we get the expectation 
values ( x ’ ) ,  ( y ’ )  and ( z ’ )  in the new coordinate system ( x ’ ,  y ’ ,  z’) as 

(XI) = (y2/7’) sin 26(1 +sin2 2x/tan2 26)1/2[c0s 2w,t 

+; sin 2x(cos2 x cos2 s + sin2 x sin2 

x (cos’ x sin2 6 + sin2 x cos’ s)-’”] (45 a 

( y ’ )  = ( y 2 / 7 ’ )  sin 26 cos 2x sin 20,t (45b) 

( z ’ )  = 0. (45c) 

This leads to the following equation for the trajectory as an ellipse in the x ’y ’  plane: 

(46) 
( ( X I )  - gI2  ((Y ’H2 

[(y2/72) s in26(1+sin22x/ tan22~) 1/2 1 2 +  [(y2/72) sin26 c o s 2 x 1 * = ~  

where 

g=4(y2/T2)  sin26 sin2x(1+sin22x/tan226)”2 

x (cos2 x cos2 s + sin’ x sin2 6)-1/2(cos2 x sin2 s +sin2 x cos2 ~ ) - l / ~ ,  

Thus, we find that a coherent state constructed starting from the harmonic oscillator 
basis of the 3~ H atom leads to an elliptical orbit in a plane in the limit of large 
quantum numbers. However, this ellipse given by (46) is not identical with the Kepler 
ellipse. We further impose the physically meaningful condition for the correct classical 
limit that the wavepacket should have maximum localisation. That is, A r =  
( ( r 2 ) - ( r ) 2 ) 1 / 2  is a minimum. The expression for A r  in terms of the parametrisation 
given by equation (42) shows that for 6 =:T, A r  has its minimum value. It may be 
mentioned that in the particular case of circular orbits (Ar), , , in = [-3y2h2/4m(E)]”2. 
On putting 6 = :T, we find that eo = 0, i.e. the plane of the elliptical orbit coincides 
with the original xy plane and this also leads to the result ( 2 )  = 0. Also, the condition 
6 =$T shows that the ellipse given by (46) is identical with the ellipse given by (31) 
in the 2~ H atom case. Hence, Kepler’s third law and the relations given by (35) are 
satisfied by the parameters of the elliptical orbit in the 3~ H atom case in the classical 
limit. 
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5. Discussion and conclusion 

Based on the present work and that of BDG, we make the following observations. 
(i) The Kepler orbit obtained by starting from the 2~ H atom is identical to the 

Kepler orbit obtained by BDG starting from the 3~ H atom and imposing the condition 
( z )  = 0. 

(ii) If one starts with the 3~ H atom and uses a parametrisation which does not 
necessarily imply ( z )  = 0, the coherent wavepacket still leads to an elliptical orbit in 
the large quantum number limit. However, this is not identical to the Kepler orbit 
and not confined to the xy plane. But if one further demands that the parametrisation 
should be such that the uncertainty A r  is a minimum, one automatically gets the orbit 
in the xy plane, which is identical to Kepler’s ellipse. We offer the following plausible 
explanation to understand the situation. 

Using the spherical polar coordinates ( r ,  8, 4 )  the 3~ hydrogenic time-independent 
wavepacket can be formally written as 

If the wavepacket is restricted to the xy plane by putting 0 =;IT, then the angular part 
of the wavefunction is ylm( f3 = &IT, 4 )  = constant X exp(im4). The corresponding 2~ 

hydrogenic wavepacket can be written with ( r ,  4 )  variables as 

The symbol r denotes ( x 2 f y 2 +  z2)ll2 in 3~ and (x2+y2)l’* in 2~ space. The expressions 
for &(r) and Unm(r) are 

where P = 2mok/nhz. 
Obviously the radial parts of 14’~ and J12D coincide asymptotically for Iml= 1 = n - 1, 

n + 00. It may also be mentioned here that in case of large 1 = /mi,  we have (Abramowitz 
and Stegun 1964): 

P ~ ( C O S  e) =211T-1’zr(1+;) - (2/e)’/’[(2l+l)/e]‘ - CO @=IT 2 
1-*m i-tm 

( f ~  sin e) -‘I2 
r(21+ 1) 
r(1-r;) P ~ ( C O S  e) = 

P;(COS e) = o e = o , T  1 = 1,2, . . . * 
These observations indicate that enforcing the condition ( z )  = 0 (as in BDG) amounts 
to the large cancellation of the coherent states for angles 0 # ;IT due to rapid oscillation 
of Pf(cos e )  and the accumulation of large amplitudes at 6 =;IT, i.e. the xy plane. 
Similarly our procedure for obtaining the Kepler orbit starting from the 3D H atom 
by imposing the condition that A r  is to be a minimum with respect to the parametrisation 
used, seems to be equivalent to constructing a wavepacket of the type given by (47) 
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with I ml = I = n - 1, n+w, because our procedure also automatically leads to the Kepler 
orbit in the xy plane and the condition (z) = 0. Hence, we believe that our results and 
that of BDG are in agreement with the correspondence principle. It should be mentioned 
that our 3~ H atom results are achieved by assuming the particular convenient para- 
metrisation given by (42). Hence, it may still be incorrect to conclude that any arbitrarily 
constructed coherent wavepacket starting from the 3~ H atom always leads to a planar 
orbit in general. 

From the discussion so far one may naively conclude that coherent state wavepackets 
lead to the correct classical limit in the ZD as well as the 3~ case and a connection 
between classical and quantum mechanics has been achieved for this problem. Unfortu- 
nately, this is not entirely true. A correct description of the central field problem for 
the inverse-square force in classical mechanics requires in addition to the description 
of the orbits, the correct time dependence of the position variables x ( t )  and y( t )  or, 
equivalently r ( t )  and 4 ( t ) .  It is well known that in the case of V ( r )  = - ( k / r ) ,  x(t) ,  
y( t )  and r ( t )  are not simple harmonic in general, but are much more complicated 
functions of time. The harmonic time dependence of x ( t )  and y( t )  are reasonably 
correct only when the energy of the particle is equal to or close to the minima r = r, 
of the effective potential V e f i ( r )  = - ( k / r )  +(L2/2mrZ). Hence, the classical limit of the 
H atom obtained by BDG or in this paper are correct descriptions only when the 
eccentricity of the Kepler orbit is close to or equal to zero. For highly eccentric Kepler 
orbits the time dependence given by (30) or (43) is not the correct approximation, 
notwithstanding the fact that the resulting orbit is a Kepler ellipse. In other words, 
deduction of the Kepler orbit is not a guarantee of a completely justified correct 
classical limit of the quantal problem for the potential V (  r )  = - k /  r. 

The origin of the harmonic time dependence of the expectation values (x) and ( y )  
in this treatment can be elaborated as follows: One expects that the appropriate 
superposition needed to obtain a coherent state is of the form 

la, t ) = x  d, exp(-iE,t/h)ln) 
n 

where 

In the present and earlier treatments, the time evolution is closely approximated by 
expanding the energy in equation (26) only about the value for which d, is a maximum. 
Hence, all the other contributing wavepackets are made to have the same time depen- 
dence through the factor exp[-i(EPeak/h+o,)t]. This is made clear by noting that 
E p e a k  corresponds to the classical energy for the minima r = ro of Veff corresponding 
to which the trajectory is circular. The present and earlier approaches therefore amount 
to the consideration of wavepackets corresponding to elliptical orbits of low eccen- 
tricity, which have harmonic time dependence to a reasonable degree of accuracy. 

Before concluding, we make an additional observation. The classical limit of the 
H atom in terms of the Kepler orbit is a problem which is of interest in general aspects 
of quantum mechanics and its classical limit. As a physical problem, however, it has 
additional complications when the classical limit is reached. This is due to the fact 
that interaction in the H atom is electrodynamic in nature and hence in the classical 
limit the actual H atom will have to satisfy the laws of classical electrodynamics, such 
as radiation by accelerating charge, etc. Hence the results of the present paper should 
be understood purely as a bound-state problem under the central potential V( I )  = - k/ r 
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in quantum mechanics and its classical limit. It would be erroneous to deduce the 
properties of the physical H atom in the classical limit without incorporating additional 
features arising due to electrodynamical considerations. 
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